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Suitable metric forms for the regions inside and  outside a spherical cavity in an  
Einstein universe are derived by means  of perturbation. It is shown that  for low 
proper pressure, the cavity behaves like "negative" Schwarzschild mass.  Finally, 
the possibility of carrying over to the exact theory a proposed definition of the 
gravitational field in matter  is examined. 

1. INTRODUCTION 

In a previous paper (Kofinti, 1980), we proposed a definition in 
general relativity for the linear gravitational field in the interior of a 
continuous distribution of matter. The proposed definition is based on the 
technique of introducing a small fictitious cavity inside matter and pro- 
ceeding to the limit when the cavity is vanishingly small. 

It should be remarked that the idea of introducing a cavity in a 
Riemannian space-time manifold is not altogether foreign to the literature 
in general relativity. For example, by considering a hollow Schwarzschild 
sphere and a hollow static torus, Marder (1964) came to the conclusion 
that in many cases a spatially bounded empty region S in a space-time 
may be replaced by any class C 2, piecewise class C 4 diffeomorphic 
space-time region S '  if the bounding matter distribution is modified to 
preserve the continuity conditions of Lichnerowicz (1955). We mention 
also the "Swiss cheese model," which is a Friedmann world with an 
arbitrary number of spherically symmetric condensations situated in the 
centers of nonoverlapping spherical holes which have Schwarzschild's 
metric, Heckmann and SchiJcking (1962); see also Bonnor (1956), and 
Einstein and Straus (1945). 

In this paper, the possibility of carrying over the proposed definition 
of the gravitational field to the exact theory is studied by introducing a 
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spherical cavity in an Einstein universe. The appropriate metric forms are 
derived in Section 2 and these are matched across the junction in Section 
3. In Section 4, a Newtonian analog is derived by considering the special 
case of low proper pressure, while in Section 5 the gravitational field in 
matter is examined by considering the limiting behavior of the Weyl tensor 
in the cavity introduced. Section 6 contains some discussion and conclu- 
sions. 

2, DERIVATION OF METRIC FORMS 

Consider a small empty spherical region (II) introduced in a static 
Einstein universe. Owing to the homogeneity of the Einstein universe, we 
can take the cavity as centered at the origin r = 0  of the instantaneous 
3-space. However, owing to the unstable nature of the Einstein universe, 
we introduce fictitious stresses in the nonempty region (I) outside the 
cavity so as to hold up the matter, as it were, from expanding away to 
infinity. 

We take for the empty region (II) inside the cavity the spherically 
symmetric metric form 

ds 2 = e ~ a t  2 - e X d r  2 - r2(d0 2 + sin20 d ~  2) (2.1) 

where X, v are functions of r only and the velocity of light in vacuo is taken 
as unity (i.e., c = 1). Now, since the region (II) is empty, the corresponding 

0I) 
energy-momentum tensor Tij vanishes and so the field equations 

R;- i g ' e  + 8 j A  = - 8 = r j  i (2.2) 

(where A is the cosmological constant) and (2.1) lead to a solution of the 
form 

ds2= q( r)dt 2 -  dr2 / q( r) - r2( d02 + sin20 d ~  2) (2.3) 

where q(r)= 1 + a / r - A r 2 / 3 ,  and a is an arbitrary constant of integration. 
In the case of the nonempty region (I) outside the cavity, we regard 

the metric as a first-order perturbation of the original Einstein universe 
which is given by the metric form 

ds2 = dr2 - dr2~ qo( r) - r2( dO 2 + sin20 a~3 2) (2.4) 

where qo(r)= 1 - r 2 / R ~ ,  1 / R  2 = A-8rrpo,  where P0 is the proper pressure. 
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Suppose the small spherical cavity has a (small) radius e. Then, from 
Newtonian considerations, we expand the field variables to order e 3. Thus, 
for region (I), we write 

3 3 3 

e - x =  -- ~, enfn(r), e ~== - ~ e"gn(r), p ( r )=  ~ e~.(r)  (2.5) 
n = 0  n = 0  n = 0  

where fn(r),gn(r),pn(r) are functions of r only and fo, go,Po refer to the 
original unperturbed metric in (2.4). 

Assuming spherical symmetry after the perturbation, (2.1) and (2.2) 
yield the usual equations 

e -X(p ' / r+  1 / r  2) - 1 / r e + A = 8 ~ r p o  

e -xOC/r - 1 / r  2) + 1/r  2 - A = 8~rpo (2.6) 

p'o+(Oo+Po)V'/2=O 

where Po, Po are, respectively, proper pressure and density and a prime 
denotes differentiation with respect to r. We now substitute the expansions 
(2.5) into (2.6) and retain terms up to order e 3. On equating to zero the sum 
of all terms that are independent of e, we then obtain the relations 

g'ofo +fo go~ r2 + (A - 1 / r2)go-- 8 ~rgop o = 0 

f U r + f o / r 2 +  ( A -  l l r  2) + 8~'Po= 0 (2.7) 

p;go=0 

which are indeed satisfied by the original unperturbed Einstein universe 
since (2.4) gives 

fo ( r )=_l - r2 /R~ ,  go( r )=  l, 8~rPo=A- 1/Ro 2 (2.8) 

On equating to zero the coefficients of terms in e and solving the 
resulting differential equations, we obtain 

f l ( r ) = A / r ,  g , ( r ) - - B - - A R 2 / r  3, p l (r)- -A/8err  3 (2.9) 

where A , B  are arbitrary constants of integration. Continuing the above 
procedure, we obtain from e 2 terms 

f2(r) = C/r ,  g2(r) = D - (AB + C ) R ~ / r  3 + R4A2/r6, P2(r) = C/8~r  3 

(2.1o) 
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while e 3 terms yield 

f 3 ( r ) = E / r  

g3(r)=k2[ ' 5 3ar - br21nr- 3ak2r 3 - 3ak4r 

3 2 - ~ bk + (ak 6 -  c ) /3r  + 3bkn/r  2 + 3ck2/5r 3 

+ F -  bke/6r  4 -  3cka/7r 5 + c k e / 9 r T ] / ( r 2 -  k2) 4 (2.1 l) 

8 = p 3 ( r )  = E / r3 + ( A -  1/ r2)g3 

where C, D, E, F are arbitrary constants of integration and we have put 

k 2 =  1 / ( A +  1 / Ro~), a------3(E+ BC) 

b=---6AR~(AB+C), c=9Ro4A 3 (2.12) 

The metric form appropriate for the nonempty region (I) outside the 
cavity is thus given by (2.1) with eP,e x given by (2.5) and (2.9)-(2.12). 

3. MATCHING OF THE S O L U T I O N S  

We now determine the arbitrary constants of integration occurring 
above by applying suitable boundary conditions to the metric forms (2.3) 
for region (II) and (2.4),(2.5),(2.9)-(2.12) for region (I). From the continu- 
ity of the metrics across the boundary surface r = e of the cavity we obtain 

a = A = C = 0 ,  E = I / R ~ - A / 3  

B--- F = 0 ,  D= - 1 / R g  (3.1) 

Indeed, we could have put the arbitrary constant a equal to zero, ab initio, 
so as to ensure the regularity of the metric form (2.3) inside the cavity. On 
using (3.1) in (2.12), we find 

a = 3 E = 3 / R 2 - A ( = 8 ~ r p o ) ,  b = c = O  (3.2) 

and hence from (2.11) we obtain 

g3(r)=8rrpok2[ �89 + k 6 / 3 r ] / ( r 2 -  k2) 4 (3.3) 

where k 2 is given by (2.12). 
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it follows from (2.5), (2.8)-(2.12), and (3.3) that the metric form 
appropriate for the perturbed Einstein universe exterior to the cavity [i.e., 
region (I)] is given by 

6Mk2 
dSi 2= 1 + ( r 2 - k 2 )  a 

(r5/3 - 3k2r 3 - 3kar + k6/3r)  J dt2 

- ( 1 - r 2 / R 2 + 2 M / r ) - l d r 2 - r 2 ( d O 2 + s i n 2 O a ~  2) (3.4) 

where k 2 is given by (2.12) and we have p u t M  = 477E300. It will be noticed 
from (3.4) that as we shrink the cavity to zero (i.e., as e, or M, tends to 
zero) we recover the original unperturbed metric form in (2.4). 

Furthermore, from (2.3) and (3.1), the metric form inside the cavity 
[region (II)] is now 

dS 2 = (1 - A r 2 / 3 ) d t  2 - (1 - A r 2 / 3 ) - ' d r  2 -  r2(d02+ sin20 aZ/2) (3.5) 

which is an empty de Sitter universe. 

4. CASE OF LOW PRESSURE 

In this section, we consider the special case of an Einstein universe 
with low proper pressure P0. In this case, (2.8) and (2.12) imply that we can 
take k 2= 1/2A. Substituting this value of k into the expression (3.3) for 
g3(r) and expanding up to first order in A, we obtain 

g3(r) = 8~rpo/3r - 80~rpoAr/3 (4.1) 

It follows from (2.5) and (4.1) that the goo potential outside the cavity is 
given by 

e ~ = 1 + 87rOoe3/3r 

= 1 + 2 M / r  (4.2) 

on neglecting the product Ae 3 (in accordance with our approximations) 
4 3 and putting M =  ~re 0o, where M is the proper mass of the material 

originally occupying the small cavity introduced. 
We see from (4.2) that as far as the g0o potential outside the cavity is 

concerned, the empty cavity we have introduced behaves like a "negative" 
Schwarzschild mass located at the spatial origin r = 0. This is in remarkable 
agreement with the corresponding Newtonian result and so justifies once 



182 Kofmti 

more the usual identification of the time-time component of the weak field 
metric with the Newtonian potential. 

5. BEHAVIOR OF T H E  WEYL TENSOR 

In this section, we examine the behavior of the Weyl tensor (i.e., the 
gravitational field) in the (small) cavity as we shrink the latter to zero. 
Using the metric form in (3.5), we obtain by direct computation the 
following surviving components of the Weyl tensor: 

C 2 0 2 0  = - -  6 1 2 1 2  = Ar2/3 

6 3 0 3 0  = - -  C 3 1 3 1  = Ar2sin20/3 (5.1) 

C lmo=A/3  

Hence, as we shrink the cavity to zero, all the components of the Weyl 
tensor vanish except the component 

Cwlo=A/3  (5.2) 

On the other hand, we find from (2.4) that prior to the introduction of 
the cavity, the only surviving components of the Weyl tensor are given by 

~  = cosec20 ~ = _ 2Ar 2 (5.3) 

which clearly vanish at the spatial origin r = 0. 
It follows from (5.2) and (5.3) that for a nonzero cosmological con- 

stant, the limit of the Weyl tensor in the cavity, as we shrink the cavity to 
zero, is not equal to the original value (at r = 0) in the unperturbed Einstein 
universe. 

6. CONCLUSIONS 

In defining the gravitational field in the exact theory of general 
relativity, the linear considerations given in a previous paper (Kofinti, 
1980) would suggest cutting small cylindrical pipes. As remarked by 
Wheeler (1965), the pipe is an idealized device introduced to separate the 
effects of gravitational forces from those of pressure. However, Newtonian 
theory suggests that the statistical condition limits the equilibrium forms of 
fluids to spherical symmetry. Hence we cannot expect to find in general 
relativity a statical fluid body which is axially symmetric without being 
spherically symmetric (Synge, 1960). 
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The results in Section 5 of this paper suggest that except in the case of 
a negligible cosmological constant the definition proposed previously 
(Kofinti, 1980) requires some modification in the exact theory. 
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